Segmentation || 247

X y 1\ X

i

1T 1

Left graph Right graph Left graph /z Right graph

(a) (b)

Figure 7.30: Three-dimensional graph construction. (a) Separate identification of the left and right borders by linking
nodes in individual two-dimensional graphs corresponding to the left and right halves of the region segment of interest.
(b) By rotating up the left graph, a three-dimensional graph results in which paths correspond to pairs of region borders.

The process of constructing the three-dimensional graph can be visualized as one of rotating up the 2D
graph corresponding to the pixels left of the approximate region centerline (Figure 7.30b). The result is a
three-dimensional array of nodes in which each node corresponds to possible positions of the left and right
region borders for a given point along the length of the elongated region, and a path through the graph
corresponds to a possible pair of left and right region borders. Nodes in the 3D graph are referenced by their
(x, y, 2) co-ordinates; for a point along the region centerline defined by the co-ordinate z, a node with co-
ordinates (x,, y,, z) corresponds to a left border that is x; pixels to the left of the centerline and a right border
that is y, pixels to the right of the centerline.

As in the 2D case, it is necessary to specify a node successor rule, that is, the rule for linking nodes into
complete paths. Since the left border must be continuous, each parent node in the 2D graph corresponding to
the left border has three successors as discussed earlier, corresponding to a left border whose distance from
the centerline decreases (successor co-ordinate of (x — 1, z + 1)), increases (successor co-ordinate of (x + 1,
2+ 1)), or stays the same (successor co-ordinate of (x, z + 1)) as a function of position along the centerline.
A similar statement holds for the right border. In the 3D graph, each parent node has nine successors
corresponding to the possible combinations of change of positions of the left and right borders with respect
to the centerline, thus forming a 3 x 3 successor window. With this successor rule, all paths through the 3D
graph contain one and only one node from each profile plane in the 3D graph; that is, every path contains a
single node derived from each of the left and right profile lines. This link definition ensures that region
borders are continuous in the straightened image space.

Key aspects of the simultaneous approach for accurately identifying region borders are the assignment of costs
to pairs of candidate borders and the identification of the optimal pair of region borders or lowest-cost path in the
3D graph. The cost function for a node in the 3D graph is derived by combining the edge costs associated with the
corresponding pixels on the left and right profiles in a way that allows the position of the left border to influence
the position of the right border and vice versa. This strategy resembles that employed by a human observer in
situations where border positions are ambiguous. In designing the cost function, the aim is to discriminate against
border pairs that are unlikely to correspond to the true region borders and to identify the border pairs that have the
greatest overall probability of matching the actual borders. After the cost function is defined, either heuristic graph
searching or dynamic programming methods can be used for optimal border detection.

Similarly to the 2D case, the cost of a path in the 3D graph is defined as the sum of the costs of the nodes
forming the path. While many different cost functions can be designed corresponding to the general
recommendations given in Section 6.2.4, the following one was found appropriate for description of border
properties of a mutually inter-related border pair. Considering the cost minimization scheme, costs are
assigned to nodes using the following function:
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Cotat %32 ={C,(x, y, 2) + Cop(x, 3, 2) @(x, 3, 2) - P (2) + PR(2). (7.62)

Each of the components of the cost function depends on the edge costs associated with image pixels. The
edge costs of the left and right edge candidates located at positions x and y on profile z are inversely related
to effective edge strength or other appropriate local border property descriptor E; (x,z), Eg (y, z) and are
given by

C, (x, 9= ”g(‘?z‘ez (EL (x.2)) - E, (% 2),

Ceya)= max (Eg(y.2))-Eg(y,3), (7.63)

Xand Y are sets of integers ranging from 1 to the length of the left and right halves of the region profiles, and
Z is the set of integers ranging from I to the length of the region centerline. To help avoid detection of
regions adjacent to the region of interest, knowledge about the probable direction of the actual border may
be incorporated into the local edge property descriptors Ej (x, z), Eg (3, 2).

Considering the individual terms of the cost function (7.62), the term C, is the sum of the costs for the left
and right border candidates and causes the detected borders to follow image positions with low cost values.
It is given by

Ci(x, y2)=C,(x, 2) + Cx(y, 2). (7.64)

The C,,, term is useful in cases where one border has higher contrast (or other stronger border evidence) than
the opposite border and causes the position of the low contrast border to be influenced by the position of the
high-contrast border. It is given by

Cop (., 2) = (Cp (x, 2) = P1(2)) (Cx (3, 2) — Pr(2) ). (7.65)

where

P (z)= max (EL (x. z))—max Ep (x.2),

neX,zeZ reX
P (z)=  max (Eg (v.2))- max Ep (v, 2), (7.66)

Combining equations (7.63), (7.65), and (7.66), the CM, term can also be expressed as

Cpp (%3, 2)= (TS?‘ (E, (x.2)) Ey (x. z)j (mayx (Ex (3. 2)) Eg (5, z)) (7.67)

The @ (x, y, z) component of the cost function incorporates a model of the region boundary in a way that
causes the positions of the left and right borders to follow certain preferred directions relative to the model.
This component has the effect of discriminating against borders that are unlikely to correspond to the actual
region borders when considered as a pair. This is accomplished by including a weighting factor that depends
on the direction by which a node is reached from its predecessor. For example, if the region is known to be
approximately symmetric and its approximate centerline is known, the weighting factor may be given by
(Figure 7.31)

ox y2=1 for(x,y)e {(X-1, y-1),(X, §),(X+1, § + 1)},
oxy=a for(x,y)e {(X-=1,9) (X +1, ), (X, 5 -1),(X, y + 1)}, (7.68)
o y2=p for(x,y)e{(¥=1,3 +1),(X+1, 5 -1},

where the node at co-ordinates (x, y, z) is the successor of the node at (X, 3, z— 1). In this case, the influence

of the region model is determined by the values of « and 3, typically @ > A In coronary border detection
applications, the values of aranged from 1.2 to 1.8 and £ from 1.4 to 2.2 [Sonka et al., 1995]. The larger the
values of a and f, the stronger is the model’s influence on the detected borders.
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As the number of possible paths in a 3D graph is very large, the identification of the optimal path can be
computationally very demanding. For example, for a 3D graph with xyz nodes, where z is the length in pixels
of the region centerline, the number of possible paths is approximately 9% With conventional border
detection, described in Sections 6.2.4 and 6.2.5, the number of possible paths in the two two-dimensional
graphs of the same size is about 3%. Thus, the improvement in border detection accuracy
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Figure 7.31: The weighting factors @ (x, y, z) associated with local directions of the potential border elements for a
symmetric region model.

achieved with simultaneous border detection is accomplished at the expense of an increase in computational
complexity, that is quite substantial for the heuristic graph search approach but less so for dynamic
programming (Sections 6.2.4 and 6.2.5).

Improving the graph search performance is of great importance, and the P; (z) + P (z) term in the cost
function represents the lower-bound heuristic introduced in Section 6.2.4, and does not influence the detected
border; it does, however, substantially improve search efficiency if a heuristic graph searching approach is
used [Sonka et al., 1993].

A second way to increase search efficiency is to use a multi-resolution approach (Section 10.1.5). First,
the approximate positions of the region borders are identified in a low-resolution image; these approximate
borders are used to guid'e the full-resolution search by limiting the portion of the full-resolution three-
dimensional graph that is searched to find the precise region border positions.

To enhance border detection accuracy, a multi-stage border identification process may also be included. The
goal of the first stage is to identify reliably the approximate borders of the region segment of interest while
avoiding detection of other structures. Having identified the approximate border positions, the second stage is
designed to localize the actuai region borders accurately. In the first stage, the 3D simultaneous border detection
algorithm is used to identify approximate region borders in a half-resolution image. Since this first stage is
designed in part to avoid detection of structures other than the region of interest, a relatively strong region
model is used. Region boundaries identified in the low-resolution image are used in the second stage to guide
the search for the optimal borders in the full-resolution cost image, as described in the previous paragraph. A
somewhat weaker region model may be used in the second stage to allow more influence from the image data
(Section 10.1.5). Further details about the cost function design can be found in [Sonka et al., 1993, 1995].
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Figure 7.32: Magnetic resonance images of human brain. Left: Three-dimensional surface rendering of original MR
image data after segmentation of the brain from the skull. Right: Four of 120 two-dimensional slices that form the
three-dimensional image volume. Courtesy of R. J. Frank and H. Damasio, The University of lowa.

Figure 7.33: Surface detection. Top: Borders between the left and right hemispheres forming the 3D surface are
shown in eight of 120 individual slices. Bottom: After the segmentation in the left and right hemispheres, the internal
cortex surfaces may be visualized. Courtesy of R. J. Frank and H. Damasio, The University of lowa.
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7.5.2 Sub-optimal surface detection

If three-dimensional volumetric data are available, the task may be to identify three-dimensional surfaces
representing object boundaries in the three-dimensional space. This task is common in segmentation of
volumetric medical image data sets from magnetic resonance, X-ray, ultrasound, or other tomographic
scanners, which produce 3D volumes consisting of stacked 2D image slices. Usually, the 2D images are
more or less independently analyzed and the 2D results stacked to form the final 3D segmentation. It is
intuitively obvious that a set of 2D borders that were detected in individual slices may be far from optimal if
the entire 3D volume is considered, and concurrent analysis of the entire 3D volume may give better results
if a globally optimal surface is determined (see Section 7.7). Consider an example of brain cortex
visualization from three-dimensional magnetic resonance (MR) data sets of a human brain (Figure 7.32).
Note that the internal cortex surfaces are not directly visible unless the brain is segmented into the right and
left hemispheres. An example of such brain segmentation applied to an individual MR slice was given earlier
in Figure 6.36. If the 3D case is considered, the goal is to identify the 3D surface that optimally divides the
brain (Figure 7.33).

It is necessary to define a criterion of optimality for the surface. Since it must be contiguous in 3D space,
it will consist of a mesh of 3D connected voxels. Consider a 3D graph that corresponds in size with the 3D
image data volume; the graph nodes correspond to image voxels. If a cost is associated with each graph
node, the optimal surface can be defined as that with the minimum total cost of all legal surfaces that can be
defined in the 3D volume. The legality of the surface is defined by the 3D surface connectivity requirements
that depend on the application at hand, and the total cost associated with a surface can be calculated as the
sum of individual costs of all nodes forming the surface. Therefore, it should be possible to determine the
optimal surface by application of optimal graph searching principles similar to those presented in Sections
6.2.4 and 6.2.5. Unfortunately, standard graph searching approaches cannot be directly extended from a
search for a path to a search for a surface [Thedens et al., 1995]. Generally, two distinct approaches can be
developed to overcome this problem. New graph searching algorithms may be designed to search directly
for a surface, or a surface detection task may be represented in a way that permits conventional graph
searching algorithms to be used.

Compared to the search for an optimal path through a graph (even through a 3D graph as shown in Section
7.5.1), the search for an optimal surface results in combinatorial explosion of the task’s complexity, and the
absence of an efficient searching algorithm has represented a limiting factor on 3D surface detection. One
approach to optimal surface detection based on cost minimization in a graph was given in [Thedens et al.,
1990, 1995]. The method used standard graph searching principles applied to a transformed graph in which
standard graph searching for a path was used to define a surface. While the method guaranteed surface
optimality, it was impractical due to its enormous computational requirements. The same authors developed
a heuristic approach to surface detection that was computationally feasible [Thedens et al., 1995].

Using several ideas from [Thedens et al., 1995], a sub-optimal approach to direct detection of surfaces
was introduced in [Frank, 1996; Frank et al., 1996]. This approach is based on dynamic programming and
avoids the problem of combinatorial explosion by introducing local conditions that must be satisfied by all
legal surfaces. The paradigm is called surface growing. The graph size corresponds directly to the image
size, and due to the local character of surface growing, the graph construction is straightforward and orderly.
The entire approach is simple, elegant, computationally efficient, and fast. Additionally, it can be generalized
to searching higher-dimensicnal spaces, e.g., time-variant three-dimensional surfaces. While the resulting
surfaces typically represent good solutions, surface optimality is not guaranteed.

The sub-optimal three-dimensional graph searching method was applied to brain cortex segmentation
shown in Figures 7.32 and 7.33. The cost function was based on inverted gray-level values of the image
voxels after the ventricles were three-dimensionally filled not to represent a large low-cost region.
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7.6 GRAPH CUT SEGMENTATION

The direct use of minimum cut/maximum flow combinatorial optimization algorithms in image processing
was first reported in [Greig et al., 1989], where the approach was employed for binary image reconstruction.
Using the same family of graph optimization algorithms, a powerful technique for optimal boundary and
region segmentation in n-D image data was presented in [Boykov and Jolly, 2001; Boykov and Kolmogorov,
2001; Boykov and Funka-Lea, 2006]. The method is initiated by interactive or automated identification of
one or more points representing the ‘object’ and one or more points representing the ‘background’-these
points are called seeds and serve as segmentation hard constraints. Additional soft constraints reflect
boundary and/or region information. As with other optimal graph searching techniques, the segmentation
solution is globally optimal with respect to an objective function. The general version of the cost function C
calculated on image segmentation f follows the Gibbs model [Geman and Geman, 1984] (compare this with
cost functions discussed in Section 10.8)

C (f) = Cdutu (f) + Csmon(h (f) (769)

To minimize C (f), a special class of arc-weighted graphs G, = (VU {s, 1}, E) is employed. In addition to the
set of nodes V corresponding to pixels (voxels) of the image /, the node set of G, contains two special
terminal nodes, namely the source s and the sink t. These terminals are hard-linked with the segmentation
seed points (bold links in Figure 7.34) and represent the segmentation labels (object, background).

The arcs E in G, can be classified into two categories: n-links and t-links. The n-links connect pairs of
neighboring pixels whose costs are derived from the smoothness term C ., (f). The #-links connect pixels
and terminals with costs derived from the data term C,,, (f). Ans - cutin G is a set of arcs whose removal
partitions the nodes into two disjoint subsets S and 7, such that s € S (all nodes linked to source) and t € T
(all nodes linked to sink) and no directed path can be established from s to . The cost of a cut is the total cost
of arcs in the cut, and a minimum s — 7 cut is a cut whose cost is minimal. The minimum s - ¢ cut problem and
its dual, the maximum flow problem, are classic combinatorial problems that can be solved by various
polynomial-time algorithms [Ford and Fulkerson, 1956; Goldberg and Tarjan, 1988; Goldberg and Rao,
1998]. Figure 7.34 shows a simple example of the use of graph cut for segmentation.

Let O, B be sets of image pixels corresponding to the object and background seeds, respectively; O c V,
B cV, 0 B =0. The seeds are used to form hard t-links in the graph. Then, the graph cut shall be
determined to form the object(s) and background from the image pixels in a way that all object pixels are
connected to the object seed terminal and all background pixels to the background seed terminal. This is
accomplished by searching for a graph cut that minimizes a cost function (equation 7.69), the terms of which
are a weighted combination of regional and boundary properties of the object with respect to the background.

Let the set of all image pixels be denoted by /, and let N denote a set of all directed pairs of pixels (p, q),
p, q € Irepresenting neighborhood pixel relationships. For example, 2D image pixels form a rectangular 2D
grid with 4- or 8-neighborhood connectivity links contained in N. In the 3D case, image voxels form a three-
dimensional grid and all their pairwise neighborhood relationships (e.g., reflecting 26-connectivity) are
contained in N. This concept can be directly extended to n — D. A cost of (p, g) may differ from that of (g, p)
allowing incorporation of asymmetric neighborhood relationships.

Let each image pixel i, take a binary label L, € {obj, bgd} where obj and bgd represent the object and
background labels, respectively. The labeling vector L. = (L,, L,, ..., LI/l) defines the resulting binary
segmentation. The cost function C that is minimized to achieve optimal labeling may be defined as a A-
weighted combination of a regional property term R (L) and a boundary property term B (L) [Greig et al.,
1989; Boykov and Jolly, 2001] (compare equation (7.69))

C(L)=AR L)+ B(L), (7.70)



Segmentation Il 253

Background

@ terminal

©)

(a)

Background

@ terminal

cut

@ @ P

terminal
(c) (d)

Figure 7.34: Graph cut segmentation-simple segmentation example. (a) Image with seeds - seed B corresponding to
background and seed O to object. (b) Grapii. (¢) Graph cut. (d) Segmentation result. Courtesy of Y. Boykov, University
of Western Ontario, ©2001 IEEE [Boykov and Jolly, 2001 ].

where
R(L)=YR,(L,) (7.71)
pel
B(L)= ¥ B,,9(L,L,) (7.72)
(p.q) eN
and

1 if L, #L,,

5(11"’ L‘/) {0 otherwise.

Here, R, (0bj) may be understood as a pixel-specific cost associated with labeling pixel p as object and R,
(bgd) a cost of labeling the same pixel p as background. For example, expecting bright objects on a dark
background, the cost R, (0bj) will be large in dark pixels (low 1, values) and small in bright pixels. Similarly,
B, , is a cost associated with a local labeling discontinuity between neighboring pixels p, g. B (. Should
be large for both p and g belonging to either object or background, and small if one of p, g belongs to object
and the other to background, i.e., across object/background boundaries. Thus, B (p, ¢ MAy correspond, e.g.,
to the inverted image gradient magnitude between pixels p and ¢ [Mortensen and Barrett, 1998]. As described
above, the complete graph includes n-links and r-links. The weights of the individual graph arcs are assigned
to the graph according to Table 7.1. The minimum cost cut on the graph G can be computed in polynomial
time for two-terminal graph cuts assuming the are weights are non-negative [Ford and Fulkerson, 1962].
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The minimum s — 7 cut problem can be solved by finding a maximum flow from the source s to the sink 7.
In maximum flow algorithms, the ‘maximum amount of water’ flowing from the source to the sink is sent
through the directed graph arcs and the amount of water flowing through each individual arc is specified by
its capacity—or arc cost. The maximum flow from s to t saturates a set of arcs in the graph. These saturated
arcs divide the nodes into two disjoint parts S and 7, corresponding to minimum cuts [Ford and Fulkerson,
1962]. The maximum flow value is equal to the cost of the minimum cut. There is a number of algorithms
that can be used to solve this combinatorial optimization task [Cook et al., 1998; Dinic, 1970; Edmonds and
Karp, 1972; Goldberg and Tarjan, 1988; Goldberg and Rao, 1998; Cherkassky and Goldberg, 1997; Corman
etal., 1990; Boykov and Kolmogorov, 2004; Boykov and Funka-Lea, 2006]. Most existing algorithms can
be categorized in two groups—push-relabel methods [Goldberg and Tarjan, 1988] and augmenting path
methods [Ford and Fulkerson, 1962]; a comparison of major graph cut algorithms with applications in vision
can be found in [Boykov and Kolmogorov, 2004].

Augmenting path algorithms (e.g., [Dinic, 1970]) push the flow through the graph from s to t until the
maximum flow is reached. The process is initialized with zero flow status when no flow exists between s and
1. During the steps leading to flow saturation, the current status of the flow distribution is continuously
maintained in a residual graph Gf, where fis the current flow. While the topology of G is identical to that
of G, the arc values keep the remaining arc capacity considering current flow status. At each iteration step,
the algorithm finds the shortest s — 7 path along the non-saturated arcs of the residual graph. The flow
through this path is augmented by pushing the maximum possible flow so that at least one of the arcs along
this path is saturated. In other words, the flow along the path is increased by Af, the residual capacities of the
path arcs are decreased by Af, and the residual capacities of the reverse path arcs are increased by Af. Each
of these augmentation steps increases the total flow from the source to sink. Once the flow cannot be increased
any more (so no new s — f path can be defined consisting exclusively of non-saturated arcs) the maximum
flow is reached and the optimization process terminates. The separation of the S and 7 graph nodes defining
the segmentation-the minimum s — r cut—is defined by the saturated graph arcs.

Table 7.1: Cost terms for Graph Cut segmentation. K may be interpreted as the maximum needed flow
capacity of the arc from source sto p € O (or from p € Bto sink t), increased by one so that the arc gets never

saturated; K =1 + maxpe,zq:‘ p.g) N B, .

Graph arc Cost

. 9 B, o for (p,q) e N

(s, p) AR, (bgd) forpel,p¢(0OUB)
K torp e O
0 forp e B

@ n A R, (obj) forpel,p ¢ (0OUB)
0 forpe O
K forpeB

The algorithm given in [Dinic, 1970] identifies the shortest path from s to ¢ using a breadth-first search.
Once all paths of length k are saturated the algorithm starts with exploring s — ¢ paths of lengths k + 1. The
algorithm’s complexity is O (mn?), where n is the number of nodes and m is the number of arcs in the graph.
Figure 7.35 gives an example of the steps needed for determining the minimum cut using an augmenting path
maximum flow algorithm.

Push-relabel algorithms for maximum flow optimization [Goldberg and Tarjan, 1988] maintain a labeling
of nodes with a lower bound estimate of its distance to the sink node along the shortest non-saturated path.
The algorithm’s functionality attempts to ‘push’ excess flow towards the nodes with shorter estimated
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distances to the sink. In each step, the node with the largest distance label is subjected to the push operation.
Alternatively perhaps, a first-in-first-out strategy may be used. The distance estimate labels increase as more
and more arcs are saturated after the push operations. As excessive flow may be pushed onto a node, this is
eventually drained back to the source. Details of this approach can be found in [Cook et al., 1998].
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Figure 7.35: Image segmentation using graph cuts and maximum flow optimization. (a) Original image data-
corresponding to Figure 7.34a. (b) Edge magnitudes calculated as image intensity differences in 4- -connectivity. (¢) G,
graph constructed according to Table 7.1: & = 0; n-link costs calculated as in equation (6.18); reverse path resmual
capacities are not shown. (d) Residual graph G, after the one and only shortest path with non-saturated s — ¢ connection
was identified and saturated. No new non-saturated s — ¢ path can be found. (e) Saturated graph arcs identified by thick
black lines. (f) Resulting minimum s — 7 cut separating S and 7 nodes. (g) Corresponding image segmentation.

Recall that the goal of graph-cut segmentauysi is to minimize the objective function given in equation (7.70)
subject to the requirement of labeling all seeds according to the initial hard constraints. Algorithm 7.7
describes this optimization process.

Algorithm 7.7: Graph cut segmentation

1.| Create an arc-weighted directed graph corresponding in size and dimensionality to the image to be
| segmented.

2.| Identify object and background seeds-example points required to be part of the background or
object(s) in the final segmentation. Create two special graph nodes-source s and sink #; connect all
seeds with either the source or the sink node based on their object or background label.

3. Associate appropriate arc cost with each link of the formed graph according to Table 7.1.

4.| Use one of the available maximum flow graph optimization algorithms to determine the graph cut.

31 | The minimum s — ¢ cut solution identifies the graph nodes that correspond to the i image boundaries

' separatmg the object(s) and the bdckground

An important feature of this approach is its ability to interactively improve a previously obtained
segmentation in an efficient way. Assume that the user has identified the initial seeds, the cost function is
available, and the graph cut optimization yielded a segmentation that was not as good as required. The
segmentation can be improved by adding supplemental object or background seeds. Suppose the user adds a
new object seed-while it is possible to recompute the graph cut segmentation from scratch, an efficient way
does not require restarting. Rather, the previous status of the graph optimization can be used to initialize the
next graph cut optimization process.
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Let a maximum flow algorithm be used for identifying the optimal graph s — ¢ cut. In this case, the
algorithmic solution is characterized by saturation of the graph by maximum flow. Adding a new object seed
p requires forming corresponding hard 7-links according to Table 7.1: weight of (s, p) set to K and weight (p,
1) set to 0. The latter may lead to appearance of negative capacities in the residual network of the current
flow. This is easily compensated for by increasing values ¢, of t-links as specified in Table 7.2. The new
costs are consistent with the costs of pixels in O since the additional constant ¢, appears at both t-links and
thus does not change the optimal cut. Therefore, the new optimal cut can be efficiently obtained starting
from the previous flow solution without starting from scratch. Of course, the same approach can be used if a
new background seed is added. Again, the cost constants added to the new t-links should be consistent with
the cost table and need to be modified by the same constant.

Table 7.2: Cost term ¢, = A (R, (bgd) + R, (0bj)) modification for sequential improvement of graph cut
segmentation after adding object seed p.

t-link initial cost added cost new cost
(s,p) AR, (bgd) K + ARp(obj) K+c,
(p,1) /1Rp (obj) ; /1Rp (bgd) cp

As is always the case with optimization techniques, cost function design influences the method’s
performance in real-world applications. For example, the seeds identifying the object and background
exemplars may consist of small patches and may thus be used to sample the object and background image
properties, e.g., calculating histograms of object and background patches. Let P (/10) and P (/1B) represent
probabilities of a particular gray level belonging to object or background, respectively. These probabilities
can be derived from the patch histograms. (It will be obvious that more complex probability functions can be
used instead). Then, the regional R, and boundary B(p, g) costs can be determined as [Boykov and Jolly,
2001]

R, (0bj) = ~1n P (1,)0),

R, (bgd) = —In P (1,IB),

(s ¥
- I
B(p,q)= expL—( "202") J ol (7.73)

where lIp, ¢!l denotes distance between pixels p, g. Thus, B (p, ¢) is high for small differences between image
values I/, - I | < o (within object or background). C'ost B (p, q) is low for boundary locations where I/, 1 |
> o. Here, orepresents allowed or expected intensity variation within the object and/or background.

Using the cost functions given in equations (7.73), Figure 7.36 demonstrates the method’s behavior and
the role of the weighting coefficient A in equation (7.70). Graph cut applications range from stereo through
multi-view image stitching, video texture synthesis, or image reconstruction, to n-dimensional image
segmentation. Figure 7.37 demonstrates the capability of the method to segment lung lobes from X-ray
computed tomography data.
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Figure 7.36: Graph cut segmentation behavior on a synthetic image. In all cases, the segmentation was initialized
using the object patch as marked in black and background patch marked in white. The resulting segmentation is shown
in light gray (background) and dark gray (objects). The initialization patches are parts of the segmented object (s) or
background. (a) Original image. (b) Segmentation result for Le [7,43], i.e., only using a wide weighting range of region
and boundary cost terms. (c) Segmentation result for A = 0, i.e., only using the boundary cost term. (d) Segmentation
result for A = 60, i.e., using almost solely the region cost term. Notice the ability of the method to change the topology
of the segmentation result. Courtesy of Y. Boykov, University of Western Ontario, ©2001 IEEE [Boykov and Jolly,
2001].

(@ (d)

Figure 7.37: Graph cut segmentation in a 3D X-ray computed tomography image of human lungs and bones.
(a) Original 3D image data with lung lobe and background initialization shown in two shades of gray—the segmentation
works in a full 3D volumetric dataset. (b) Resulting lung lobe segmentation. (c) Bone and background initialization.
(d) Resulting 3D segmentation. Courtesy of Y. Boykov, University of Western Ontario and B. Geiger, Siemens Research.
A color version of this figure may be seen in the color inset—Plate 12.
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Boykov and Jolly’s method is flexible and shares some of the elegance of level set methods. It was proven
that if the arcs of G, are properly constructed and their costs properly assigned, a minimum s - cut in G,
can be used to globally minimize the cost function of a more general form combining length, area, and flux
terms in an efficient way [Kolmogorov and Boykov. 2005: Boykov et al., 2006]. In turn. if the cost function
is appropriately designed, a minimum s — 7 cut can segment an image into objects and background as desired.
Similarly to level sets, the results are topology-unconstrained and may be sensitive to initial seed point
selections unless a priori shape knowledge about the objects is incorporated. While the graph cut approach
provides an inherently binary segmentation, it can be extended to multi-label segmentation problems as
described in [Boykov and Veksler, 2006]. Unfortunately the multi-way cut problem is NP-complete and an
a-expansion algorithm may be used to obtain a good approximate solution [Boykov et al., 2001]. The
development of graph-cut image segmentation methods is ongoing [Boykov and Funka-Lea, 2006]. A
combination of graph cuts and geodesic active contours is reported in [Boykov and Kolmogorov, 2003]. A
connection between discrete graph cut algorithms and global optimization of a wide class of continuous
surface functionals can be found in [Kolmogorov and Boykov, 2005]. In-depth discussion of associations
between the level set and graph cut approaches can be found in [Boykov and Kolmogorov, 2003; Boykov
and Funka-Lea, 2006: Boykov et al., 2006]. Experimental comparison of performance of several min-cut /
max-flow algorithms for energy minimization in vision applications can be found in [Boykov et al., 2001].

7.7 OPTIMAL SINGLE AND MULTIPLE SURFACE SEGMENTATION

The task of optimally identifying three-dimensional surfaces representing object boundaries is important in
segmentation and quantitative analysis of volumetric images. In addition to single standalone surfaces, many
surfaces that need to be identified appear in mutual interactions. These surfaces are coupled in a way that
their topology and relative positions are usually known, and they appear in some specific relationship.
Clearly, incorporating such surface-interrelation information into the segmentation will further improve its
accuracy and robustness. Simultaneous segmentation of coupled surfaces in volumetric images is an under-
explored topic, especially when more than two surfaces are involved.

A polynomial time method was developed for n-D (n > 3) optimal hyper-surface detection with hard
smoothness constraints, making globally optimal surface segmentation in volumetric images practical [Wu
and Chen, 2002; Li et al., 2004b]. By modeling the problem with a weighted geometric graph, the method
transforms the segmentation problem into computing a minimum s — 7 cut in a directed graph, which simplifies
the problem and consequently solves it in polynomial time. Note that the general method of graph cut
optimization is again employed, which accounts for a possibly confusing terminological similarity between
the direct graph cut segmentation (Section 7.6) and the optimal surface segmentation methods reported here.
Nevertheless, the two approaches are principally different as becomes obvious below.

The optimal surface segmentation method facilitates simultaneous detection of & (k > 2) interrelated
surfaces by modeling the n-D problem in an (7 + 1)-D geometric graph (or simply graph), where the (n + 1)-
th dimension holds special arcs that control the interrelations between pairs of the sought surfaces [Li et al.,
2004a, 2006]. The apparently daunting combinatorial explosion in computation is avoided by transforming
the problems into computing minimum s - 7 cuts.

Like other graph-search based segmentation methods, this approach first builds a graph that contains
information about the boundaries of the target objects in the input image, and then searches the graph for a
segmentation solution. However, to make this approach work effectively for segmentation problems, several
key issues must be handled: (i) How to obtain relevant information about the target object boundaries;
(ii) how to capture such information in a graph; and (iii) how to search the graph for the optimal surfaces of
the target objects. The general approach consists of five main steps, which constitute a high level solution to
these three key issues. Of course, in solving different segmentation problems, variations of these steps may
be applied.
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Algorithm 7.8: Optimal surface segmentation

1. Pre-segmentation. Given an input image, perform a pre-segmentation to obtain an approximation
to the (unknown) surfaces for the target object boundaries. This gives useful information on the
topological structures of the target object(s). Quite a few approximate surface detection methods
are available, such as active appearance models, level sets, and atlas-based registration. For
surfaces with a geometry that is known to be relatively simple and thus allows the unfolding process
(e.g., terrain-like, cylindrical, tubular, or spherical surfaces), this first step may not be needed.

2. Mesh Generation. From the resulting approximate surface(s), a mesh is computed. The mesh is
used to specify the structure of a graph Gy, called the base graph. Gy defines the neighboring
relations among voxels on the sought (optimal) surfaces. Voronoi diagram and Delaunay
triangulation algorithms or isosurfacing methods (e.g., the marching cubes) can be used for the
mesh generation. For surfaces allowing an unfolding operation, this step may not be needed, since
in many cases a mesh can be obtained easily.

3. Image Resampling. For each voxel v on the sought surfaces, a vector of voxels is created that is
expected to contain v. This is done by resampling the input image along a ray intersecting every
vertex u of the mesh (one ray per mesh vertex). The direction of the ray is either an approximate
normal of the meshed surface at u, or is defined by a center point/line of the target object. These
voxel vectors produced by the resampling form a new image. Steps 1-3 are for handling issue (i)
above.

4. Graph Construction. A weighted directed graph G is built on the vectors of voxels in the image
that resulted from the resampling. Each voxel vector corresponds to a list of nodes in G (called a
column). G is a geometric graph since it is naturally embedded in an n-D space (n = 3). The
neighboring relations among voxels on the sought surfaces are represented by the adjacency
relations among the columns of G, as specified by the arcs in the base graph Gy. Each column
contains exactly one voxel located on the sought surfaces. The arcs of G are used to enforce
constraints on the sought surfaces, such as the smoothness constraints and inter-surface separation
constraints. The intensity of each voxel in the vectors is related to the cost of the corresponding
node in G. The node costs of G can also encode edge-based and region-based cost functions.
Information on the constraints and cost functions of a target segmentation problem needs to be
obtained. This step is for handling issue (ii).

5.  Graph Search. The graph construction scheme ensures that the sought optimal surfaces correspond
to an optimal closed set in the weighted directed graph G (as proven in [Wu and Chen, 2002; Li et
al., 2006]). Thus, the sought optimal surfaces are obtained by searching for an optimal closed set in
G using efficient closed set algorithms in graph theory and can be achieved by using standard s — ¢
cut algorithms. This step is for handling the issue (iii).

Simple example The formal description of the graph searching algorithms given here is precise but not very
intuitive. To reach an intuitive understanding of the underlying processes before the formal description, a
very simple 2D example is presented corresponding to a tiny 2 x 4 image. Let graph nodes correspond to
image pixels with a cost associated with each node (Figure 7.38a). The goal is to find the minimum-cost path
from left to right. The cost of the path is calculated as the sum of its node costs. The list of all paths in the
graph includes (considering that the maximum allowed vertical distance between the two next-column nodes
of the path is 1): ae, af, be, bf, bg, cf, cg, ch, dg and dh. The minimum-cost path can be easily identified as cg
with the cost of 2.
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Figure 7.38: Simple 2D example of the proposed minimum cost graph-search detection algorithm. See text for details.

The arcs of the graph are constructed as shown in Figure 7.38b. Cost transformation is performed by
subtracting the cost of the node immediately below from the cost of the node under consideration (Figure
7.38¢). The costs of the bottommost two nodes are left unchanged, unless their cost sum is greater or equal
to 0. If so, the sum of the bottom node costs is increased by one and subtracted from any single one of the
bottommost nodes. In this example, the sum of the bottommost two nodes is 11; let’s select node d and
subtract 12 from its cost (Figure 7.38c). A closed set is a subset of the graph nodes with no arcs leaving the
set. Every potential path in Figure 7.38a uniquely corresponds to a closed set in Figure 7.38c. Importantly,
the minimum-cost path corresponds to the minimum-cost closed set in Figure 7.38c.

To compute the minimum-cost closed set of the graph, a transform to an arc-weighted directed graph is
performed. Two new auxiliary nodes are added to the graph-a start node s with a connecting arc to every
negative-cost node, and a terminal node t with an arc from every non-negative-cost node. Every arc is
assigned a capacity. The capacities of the arcs from (to) the start (terminal) node are the absolute values of
the costs of the nodes they are connected to (from) (Figure 7.38d). All other arcs have infinite capacity. The
node costs are no longer used and are ignored. The minimum-cost closed set of the graph in Figure 7.38¢ can
be obtained by computing the minimum s — t cut or maximum flow from s to ¢ in the graph.

The graph transforms described above represent the core of this approach. To solve the next step, several
algorithms for computing the minimum s — 7 cut exist as outlined in the previous section. Following the
maximum flow optimization approach (Section 7.6), the negative-cost (non-negative-cost) nodes are tunnels
allowing water to flow in (out). The arcs are pipes connecting the source, tunnels and the sink. The pipes are
directional, and the cumulative water flow cannot exceed the pipe capacity. Due to the limited pipe capacities,
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the amount of water that can flow from the source to the sink will have some maximum. To achieve this
maximum flow, some pipes will be saturated, meaning that the water flowing through them will equal their
capacities. In Figure 7.38e, the path from s to  was found with a capacity of 3. This will saturate the path’s
pipes (arcs) from the source s and to the sink 7. These two saturated pipes are removed and a new pipe is
created in the reverse direction along the path having a capacity of 3. In Figure 7.38f, another s —  path is
found with a capacity 7. Similarly, a reverse path with capacity 7 is created. Figure 7.38g identifies the third
and final path that can be found-its capacity of 1 saturates the pipe to the sink that was not completely
saturated in the previous step. Since this was the last path, all tunnels that can be reached from the source are
identified (Figure 7.38h) as belonging to the minimum cost closed set (Figure 7.38i). The uppermost nodes
of the minimum closed set form the minimum cost path thus determining the solution.

Graph construction A key innovation of this method is its non-trivial graph construction, aiming to
transform the surface segmentation problem into computing a minimum closed set in a node-weighted
directed graph. A closed set Z in a digraph is a subset of nodes such that all successors of any nodes in Z are
also contained in Z. The cost of a closed set is the total cost of the nodes in the set. The minimum closed set
problem is to search for a closed set with the minimum cost, which can be solved in polynomial time by
computing a minimum s —  cut in a derived arc-weighted digraph [Hochbaum, 2001].

Single surface graph construction A volumetric image can be viewed as a 3-D matrix I(x, y, z) (Fig. 7.39).
Without loss of generality, a surface in I is considered to be terrain-like and oriented as shown in Figure 7.40.
Let X, Y and Z denote the image sizes in x, y and z directions, respectively. We utilize a multi-column
modeling technique. A surface is defined by a function S : (x, y) = S (x, y), where x € x={0,.... X~ 1},y €
y=1{0,...,Y—1}and S (x, y) € z= {0...., Z— 1}. Thus, any surface in / intersects with exactly one voxel of
each column (of voxels) parallel to the z-axis, and it consists of exactly X x Y voxels.

y y

(a) (b)

Figure 7.39: Graph construction. (a) Graph node neighbors-considering the smoothness constraint A, = Ay = 2).
(b) 3D graph XYZ and the 3D surface dividing the graph into upper and lower parts.

A surface is regarded as feasible if it satisfies some application-specific smoothness constraint, defined
by two smoothness parameters, A, and Ay. The smoothness constraint guarantees surface connectivity in 3-
D. More precisely, if 7 (x, y, z) and I (x + 1, y, z”) are two voxels on a feasible surface, then Iz — 21 < A,.
Likewise, if I (x, y, z) and I (x, y + 1, z) are two voxels on a feasible surface, then Iz -z’ <A,. If A (Ay) is
small, any feasible surface is stiff along the x (y) direction, and the stiffness decreases with larger A, (Ay).

By defining a cost function, a cost value is computed for each voxel I (x, y, z) of /, denoted by ¢ (x, y, 2).
Generally, c (x, y, z) is an arbitrary real value that is inversely related to the likelihood that the desired surface
contains the voxel I (x, y, z). The cost of a surface is the total cost of all voxels on the surface. An optimal
surface is the surface with the minimum cost among all feasible surfaces definable in the 3D volume.

A node-weighted directed graph G = (V, E) is constructed according to / as follows. Every node V (x, y, 2)
€ Vrepresents one and only one voxel / (x, y, z) € I, whose cost w (x, y, 2) is assigned according to:
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c(x, y,2) if z=0,
Wi 2= c{x,y,2)—c(x,y,z—1) otherwise. (74
Col(x+1,y)
Col(x,y)
f T
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i

(@) (b)

Figure 7.40: The single surface detection problem. (a) The surface orientation. (b) Two adjacent columns of the
constructed directed graph. Arcs shown in dashed lines are optional.

A node V (x, y, z) is above (resp., below) another node V (x', y', ') if z > 2’ (resp., z < Z'). For each (x, y)
pair withx € xand y € y, the node subset { V (x, y, 2) Iz € z} is called the (x, y)-column of G, denoted by Col
(x, y). Two (x, y)-columns are adjacent if their (x, y) coordinates are neighbors under a given neighborhood
system. For instance, under the 4-neighbor setting, the column Col (x, y) is adjacent to Col (x + 1, y),
Col (x—1,y), Col (x,y + 1), and Col (x, y — 1). Hereafter, the 4-neighbor system is assumed. The arcs of G
consist of two types, intra-column arcs and inter-column arcs.

Intra-column arcs E*: Along each column Col (x, y), every node V (x, y, z), z> 0 has a directed arc to the
node V(x,y,z—-1),1i.e.,

E‘={(V(x,y,2),V(X,y,z—1))|z >0} . (7.75)

Inter-column arcs E: Consider any two adjacent columns, Col (x, y) and Col (x + 1, y). Along the x-
direction and for any x € x, a directed arc is constructed from each node V (x, y, z) € Col (x, y) to node V (x +
1,y, max (0,z—A,)) € Col (x+ 1, y). Similarly, a directed arc is connected from V(x+ 1, y, z) € Col (x+ 1, y)
to V(x, y, max (0,z—A,)) € Col (x, y). The same construction is done for the y-direction. These arcs enforce
the smoothness constraints. In summary,

E'= ((V(x,y,2, V{x+1,y,max(0,z-A)))) Ix e {0,...X-2},zez} U
{(V(x,y,2), VIx-1,y, max(0, z - A,))) xe{l, . X-1lzez} U
{(V(x, 52, V(x, y+ 1, max(0, z - Ay))) lye{0,...,Y-2},zez} U
{(V(x,y,2), V(x,y- 1, max(0, z—Ay))) ly e {l,..,Y-1},z € z} (7.76)

Intuitively, the inter-column arcs guarantee that if voxel 7 (x, y, z) is on a feasible surface S, then its
neighboring voxels on § along the x-direction, / (x + 1,y, z') and / (x— 1,y, Z'’), must be no ‘lower’ than voxel
I(x, y, max (0, z - A))), i.e., Z', 2" = max (0, z — A,). The same rule applies to the y-direction. The inter-
column arcs make the node set V (x, y, 0) strongly connected, meaning that in V (x, y, 0), every node is
reachable from every other node through some directed path. V (x, y, 0) also forms the ‘lowest’ feasible
surface that can be defined in G. Because of this, the node set V (x, y, 0) is given a special name called the
base set, denoted by V2.

As presented above, the graph searching approach would only facilitate plane-like surface detection (see
Figure 7.39b). However, the 3D surface to be searched often has a cylindrical shape. The method can detect
circular surfaces after a straightforward extension. Let’s assume that the desired surface is required to be
wraparound along the x- (or y-) direction. The cylindrical surface is first unfolded into a terrain-like surface
using cylindrical coordinate transform before applying the algorithm (Figure 7.41). Then, the first and last
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rows along the unfolding plane shall satisfy the smoothness constraints. In the x-wraparound case, each node
V{0, y, 2), resp., V(X — 1, y, 2), also connects to V {X — 1, y, max (0, z — AY). resp., V (0, y, max (0, z—A))).
The same rule applies to the y-wraparound case.

Multiple surface graph construction For simultaneously segmenting & (k > 2) distinct but interrelated
surfaces, the optimality is not only determined by the inherent costs and smoothness properties of the
individual surfaces, but also confined by their interrelations.

If surface interactions are not considered. the k surfaces S, can be detected in k separate 3D graphs G, =
(Vo E)=(V,EfOUE"), i=1,.., k. Each G, is constructed in the way presented above. The node costs are
computed utilizing k cost functions (not necessarily distinct), each of which is designed for searching one
surface. Taking the surface interrelations into account, another set of arcs £’ is needed, forming a directed
graph G (V. E) in 4D space with V.= U",_, V,and E = U*_, E; U E’. The arcs in E' are called inter-surface
arcs, which model the pairwise relations between surfaces. For each pair of the surfaces, their relations are
described using two parameters, &' > 0 and 5" > 0, representing the surface separation constraint.

v".

Unfolding y
plane

(]

(a) (b)

Figure 7.41: Image unfolding. (a) A tubular object in a volumetric image. (b) ‘Unfolding’ the tubular object in (a) to
form a new 3D image. The boundary of the tubular object in the original data corresponds to the surface to be detected
in the unfolded image.

The construction of E* for double-surface segmentation is detailed below. The ideas can easily be
generalized to handling more than two surfaces. In many practical problems, the surfaces are expected not to
intersect or overlap. Suppose that for two surfaces S| and S, to be detected, the prior knowledge requires S,
being below S,. Let the minimum distance between them be &' voxel units, and the maximum distance be 8"
voxel units. Let the 3D graphs used for the search of §; and §, be G, and G,, respectively, and let Col,(x, y)
and Col, (x, y) denote two corresponding columns in G, and G,.

For any node V| (x, y. 2) in Col, (x, y) with z > 6", a directed arc in E* connecting V, (x, y, z) to V, (x, y, 2
— 6") is constructed. Also, for each node V, (x, v, z) in Col, (x, y) with z < Z — &, a directed arc in E*
connecting V, (x, y, 2) to V, (x. y, z + &) is introduced. This construction is applied to every pair of
corresponding columns of G| and G,.

Because of the separation constraint (S, is at least 5’ voxel units below S)), any node V| (x, y, z) with z <
' cannot be on surface S} Otherwise, no node in Col, (x, y) could be on surface S,. Likewise, any node V,
(x, y z) with z>Z - 5 cannot belong to surface S,. These nodes that are impossible to appear in any feasible
solution for the problem are called deficient nodes. Hence, for each column Col, (x, y) € G,, it is safe to
remove all nodes V/ (x, v, z) with z> &' and their incident arcs in E,. Similarly, for each column Col, (x, y) €
G,, all nodes V; (x, y, z) with 2 > Z— &' and their incident arcs in E, can be safely eliminated.
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Due to the removal of deficient nodes, the base set of G, becomes V/(x, y, 6’). Correspondingly, the cost
of each node V, (x, y, &' is modified as w, (x,y, sl = c (x, .»',5[), where ¢ (x, y, &) is the original cost of
voxel I (x, y, 5’) for surface §,. The inter-column arcs of G, are modified to make V, (x, y, 5’) strongly
connected. The base set of G then becomes V% = Vi(Xx.y, (5’) U V,(x,y, 0). The directed arcs (V, (0,0, 5’), V,
(0,0,0)) and (V, (0, 0, 0), V, (0,0, 8')) are introduced to E’ to make Vs strongly connected.

In summary, the inter-surface arc set E' for modeling non-crossing surfaces is constructed as

E= {(Vi(x .2, Va(x.y,2- 3 122 5} U {(< V,(0.0,8), V,(0,0, 0))}
U {(Va(x, ¥, 2, Vi (X, y. 2+ 8 ) 1z<Z-8"} U {(V,(0,0,0), V, (0, 0,8 ))} 7.7

In other situations, two interacting surfaces may be allowed to cross each other. This may be encountered
when tracking a moving surface over time. For these problems, instead of modeling the minimum and
maximum distances between them, &' and & specify the maximum distances that a surface can vary below
and above the other surface, respectively. The inter-surface arcs for this case consist of the following: (V| (x,
v, 2), V,(x,y, max (0. z - 8’))) and (V, (x, y, 2), V, (x,y, max (0, z - 8"))) forallx e x,ye yandz € z. A
summary of all cases is illustrated in Figure 7.42.

N —— Col,(x,y) Col.(x,y) Coly(x,y) Coly(x.y)
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Figure 7.42: Summary of surface interrelation modeling. S, and S, are two desired surfaces. Col, (x, y) and Col 5(x, y)
are two corresponding columns in the constructed graphs. Arcs shown in dashed lines are optional. (a) The non-crossing
case. (b) The case with crossing allowed.

Surface detection algorithm The segmentation of optimal surfaces is formulated as computing a minimum
closed set in a geometric graph constructed from /. The time bound of the algorithm is independent of both
the smoothness parameters (A,; and A, i = 1...., k) and the surface separation parameters ((5’,»' i land 0%,
1, i=1,...,k—1). Note that improper specifications of these constraints may lead to an infeasible problem,
i.e., the constraints are self-conflicting and thus no & surfaces satisfying all the constraints exist in /.

In the single-surface case, for any feasible surface S in /, the subset of nodes on or below S in G, namely
Z={V(x,¥,2) lz< S (x, y)}, forms a closed set in G. It can be observed that if V (x, y, z) is in the closed set
Z, then all nodes below it on Col (x, y) are also in Z. Moreover, due to the node cost assignments in equation
(7.74), the costs of S and Z are equal. In fact, as proven in [Wu and Chen, 2002], any feasible S in I uniquely
corresponds to a nonempty closed set Z in G with the same cost. This is a key observation to transforming the
optimal surface problem into seeking a minimum closed set in G.

Computation of a minimum-cost nonempty closed set Zx in G is a well studied problem in graph theory.
As given elsewhere [Picard, 1976; Hochbaum, 2001; Wu and Chen, 2002], Zx in G can be obtained by
computing a minimum s — 7 cut in a related,graph G,. Let V " and V™~ denote the sets of nodes in G with non-
negative and negative costs, respectively. Define a new directed graph G = (V U {s, t}, EU E,)). An infinite
cost is assigned to each arc in E. E, consists of the following arcs: The source s is connected to each node
v € V by adirected arc of cost —w (v); every node v € V+ is connected to the sink 7 by a directed arc of cost
w (v). Let (S, T) denote a finite-cost s — 7 cut in G, and ¢ (S, T) denote the total cost of the cut. It was shown
that

c(SST=-w(V )+ Z w(v), (7.78)
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where @ (V") is fixed and is the cost sum of all nodes with negative costs in G. Since S\ {s} is a closed set
in G [Picard, 1976; Hochbaum, 2001], the cost of a cut (S, 7) in G, and the cost of the corresponding closed
set in G differ by a constant. Hence, the source set Sx \ {s} of a minimum cut in G|, corresponds to a
minimum closed set Zx in G. Because the graph G, has O (kn) nodes and O (kn) arcs, the minimum closed
set Zx in G can be computed in 7T (kn, kn) time.

For the multiple surface case, the optimal k surfaces correspond to the upper envelope of the minimum
closed set Zx. For each i (i = 1...., k), the subgraph G, is used to search for the target surface S;. For every x
e xandy ey, let V¥ (x, y) be the subset of nodes in both Z* and the (x, y)-column Col,(x, y) of G, i.e., Ve
(%, y) = Z+ N Col,(x, y). Denote by V,(x, y, z*) the node in Vlf(x, y) with the largest z-coordinate. Then, voxel
I (x, y, z*) is on the i-th optimal surface S%. In this way, the minimum closed set Z* of G uniquely defines the
optimal k surfaces {S*,... ,Syx} in L.
| Algorithm 7.9: Multiple optimal surface segmentation

1. Determine parameters representing a priori knowledge about the number of surfaces and the hard
and soft segmentation constraints: k, A,, Ay, 5" 8 cost function(s).

2. Construct graph G, = (VU {s,t}, EVU E,).

3. Compute the minimum s — ¢ cut (S*, T%) in Gy,

4. Recover the k optimal surfaces from Sx \ {s}.

i
|

Cost functions Designing appropriate cost functions is of paramount importance for any graph-based
segmentation method. In real-world problems, the cost function usually reflects either a region-based or
edge-based property of the surface to be identified.

Edge-based cost functions A typical edge-based cost function aims to accurately position the boundary
surface in the volumetric image. Several alternative cost functions were presented in Section 6.2.4. An
advanced version of an edge-based cost function may utilize a combination of the first and second derivatives
of the image intensity function [Sonka et al., 1997], and may consider preferred directions of the identified
surface. The combination of the first and second derivatives permits fine-tuning of the cost function to
maximize border positioning accuracy. :

Let the analyzed volumetric image be I (x, y, z). Then, the cost ¢(x, y, z) assigned to the image voxel / (x,
vy, z) can be constructed as:

cyz=-exy2 pdkxy)+qxy 2, (7.79)

where e(x, y, z) is a raw edge response derived from the first and second derivatives of the image, ¢ (x, y, z)
denotes the edge orientation at location (x, y, z) that is reflected in the cost function via an orientation penalty
p(d(x,y 2). 0<p<1when ¢(x,y, z) falls outside a specific range around the preferred edge orientation;
otherwise p = 1. A position penalty term ¢ (x, y, z) >0 may be incorporated so that a priori knowledge about
expected border position can be modeled.

e (x, Y )= -lol)- (I Mﬁrsl dcrivalive)(x’ Y 2) + o (I * Msecond dcrivalive) (x, y 2). (7.80)

The + operator stands for a pixel-wise summation, and * is a convolution operator. The weighting coefficient
— 1 < ® < 1 controls the relative strength of the first and second derivatives, allowing accurate edge
positioning. The values of ®, p, ¢ may be determined from a desired boundary surface positioning information
in a training set of images; values of ® are frequently scale dependent.

Region based cost functions The object boundaries do not have to be defined by gradients as discussed in
Section 7.3 (and shown in 2D in equation (7.45)). In 3D, the Chan-Vese functional is

C(S,al,az)zj )(I(x,y,z)—a,)zdxdydz+I (1(x,y,z)—a2)2dxdydz. (7.81)

inside (S outside (S)
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As in equation (7.45), a, and a, are the mean intensities in the interior and exterior of the surface S and the
energy C (S, a,, a,) is minimized when S coincides with the object boundary, and best separates the object
and background with respect to their mean intensities.

The variance functional can be approximated using a per-voxel cost model, and in turn be minimized
using a graph-based algorithm. Since the application of the Chan-Vese cost functional may not be
immediately obvious, consider a single-surface segmentation example. Any feasible surface uniquely
partitions the graph into two disjoint subgraphs. One subgraph consists of all nodes that are on or below the
surface, and the other subgraph consists of all nodes that are above the surface. Without loss of generality, let
anode on or below a feasible surface be considered as being inside the surface; otherwise let it be outside the
surface. Then, if a node V (x', y', z') is on a feasible surface S, then the nodes V (x',y’,z) in Col (x',y") with z
= 7' are all inside S, while the nodes V (x', y', z) with z < z” are all outside S. Hence, the voxel cost ¢ (x', ¥/,
') is assigned as the sum of the inside and outside variances computed in the column Col (', y"), as follows

c(x,y.2)= Yy, D)-a) + Y (I(x,y,2)- ). (7.82)
27 z>7'

Then, the total cost of S will be equal to cost C (S, ay, a,) (discretized on the grid (x, y, z)). However, the
constants a; and a, are not easily obtained, since the surface is not well-defined before the global optimization
is performed. Therefore, the knowledge of which part of the graph is inside and outside is unavailable.
Fortunately, the graph construction guarantees that if V (x', y', z') is on S, then the nodes V (x, y, z;) with z,
={zlz<max (0,7 — Ix—x"IA, — ly - y'IAy)} are in the closed set Z corresponding to S. Accordingly, the nodes
Vx,y, ) withzy = {z 1 2’ + x = X'l A, + ly— y'lA, < z < Z} must not be in Z. This implies that if the node
V(x',y', 7') is on a feasible surface S, then the nodes V (X, y, zy) are inside S, while the nodes V (x, y, z,) are
outside S.

Consequently, a, (x', y', Z') and @, (x', ¥, z') can be computed, that are approximations of the constants a,
and a, for each voxel I (x', ¥, z')

a, (x',y', Z) =mean(l (x, y, z,)), (7.83)

a, ',y z')=mean(l (x, y, z,)). (7.84)
The estimates are then used in equation (7.82) instead of a, and a,.

Examples To demonstrate the method’s behavior, let’s first look at segmenting a simple computer-generated
volumetric image shown in Figure 7.43a, which however is difficult to segment. This image consists of 3
identical slices stacked together to form a 3D volume. The gradual change of intensity causes the gradient
strengths to locally vanish. Consequently, border detection using an edge-based cost function fails locally
(Figure 7.43b). Using a cost function that includes a shape term produces a good result (Figure 7.43c).
Figure 7.43d demonstrates the method’s ability to segment both borders of the sample image.

Figure 7.44 presents segmentation examples obtained using the minimum-variance cost function in images
with no apparent edges. The objects and background were differentiated by their respective textures. In
Figure 7.44, curvature and edge orientation were used instead of original image data [Chan and Vese, 2001].
The two boundaries in Figure 7.44c.d were segmented simultaneously.

The optimal surface detection method has been used in a number of medical image analysis applications
involving volumetric medical images from CT, MR, and ultrasound scanners. Figure 7.45 shows a
comparison of segmentation performance in human pulmonary CT images. To demonstrate the ability of
handling more than two interacting surfaces, four surfaces of excised human ilio-femoral specimens-lumen,
intima-media (internal elastic lamina (IEL)), media-adventitia (external elastic lamina (EEL)), and the outer
wall-were segmented in vascular MR images. The optimal multiple-surface segmentation clearly
outperformed the previously used 2D approach [Yang et al., 2003] and did not require any interactive
guidance (Figure 7.46).
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() (b) (c) (d)

Figure 7.43: Single-surface versus coupled-surfaces. (a) Cross-section of the original image. (b) Single surface
detection using the method with standard edge-based cost function. (c) Single surface detection using the algorithm and
a cost function with a shape term. (d) Double-surface segmentation.

‘ )
(©) (b) (] (d)

Figure 7.44: Segmentation using the minimum-variance cost function. (a,c) Original images. (b,d) The segmentation
results.

The optimal surface detection method remains fully compatible with conventional graph searching. For
example, when employed in 2D, it produces an identical result when the same objective function and hard
constraints are employed. Consequently, many existing problems that were tackled using graph-searching in
a slice-by-slice manner can be migrated to this framework with little or no change to the underlying objective
function. Comparing to other techniques, one of the major innovations is that the smoothness constraint can
be modeled in a graph with a non-trivial arc construction.

Sequential 2D dynamic programming

3D single-surface segmentation

Figure 7.45: Comparison of 2D and 3D inner airway wall segmentation results. A preliminary airway tree segmentation
is shown in Figure 7.21. The three bottom and top left panels demonstrate resampling of airway segments to obtain
orthogonal slices on which the border detection is performed. Results of 2D slice-by-slice dynamic programming
approach in three consecutive slices together with 3D surface rendering of the entire segment (10 slices) is shown in the
upper row. The bottom row shows the same segment with the luminal surface detected using the optimal 3D graph
searching approach. Note the failure of the 2D approach in one of the slices.
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(a) (b) (c)

Figure 7.46: Multi-surface segmentation of arterial wall and plaque in volumetric MR images. (a) Original MR image
of femoral artery cross-section-the volumetric 3D image consisted of 16 cross sections. (b) Three manually identified
wall layer borders. (¢) Four computer-detected surfaces of plaque and wall layers.

Thus, smoothness becomes a hard constraint that has a clear geometric meaning, as opposed to a soft
constraint defined by a weighted energy term as discussed in Section 7.5.1. As a consequence, the objective
function may become more transparent and easier to design. The smoothness thus modeled is not
discontinuity-preserving, as desired by some problems in vision (e.g., stereo, multicamera scene
construction). However, discontinuity-preservation is not always desirable. The presented ability to identify
multiple coupled surfaces in an optimal way is a major advance in graph search-based segmentation.

Summary

¢ Mean shift segmentation

— Mean shift approach is a non-parametric technique for the analysis of a complex multi-modal feature
space and identification of feature clusters.

— The only free parameters of the mean shift process are the size and shape of the region of interest,
i.e., the multivariate density kernel estimator.

- Density estimation is modified so that the density gradient is estimated.

— For mean shift image segmentation, a 2-step sequence of discontinuity preserving filterin g and mean
shift clustering is used.

e Fuzzy connectivity

— Fuzzy connectivity segmentation approach uses the hanging-togetherness property to identify image
elements that form the same object. Rather than being crisp, the hanging togetherness is described
using fuzzy logic.

- Fuzzy affinity describes local fuzzy relationships.

— Fuzzy connectedness is a global fuzzy relationship that assigns every pair of image elements a value
based on the affinity values along all possible paths between these two image elements.

e Active contour models—snakes

— A snake is an energy minimizing spline—the snake’s energy depends on its shape and location
within the image. Local minima of this energy then correspond to desired image properties.
Snakes are parametric deformable models.

The energy functional which is minimized is a weighted combination of internal and external forces.
Gradient vector flow field increases the effective area of snake attraction decreasing the snake’s
sensitivity to initialization and allowing to segment concave boundaries.

e Geometric deformable models

- Geometric deformable models represent the developing surfaces by partial differential equations.
- The movements of the propagating fronts are described by speed functions.
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The evolving curves and/or surfaces are represented as level sets of higher dimensional functions
yielding seamless treatment of topologic changes.

Simultaneous border detection

Simultaneous border detection facilitates optimal identification of border pairs by finding an optimal
path in a three-dimensional graph.

It is based on the observation that there is information contained in the position of one border that
might be useful in identifying the position of the other border. After a cost function that combines
edge information from the left and right borders has been defined, either heuristic graph searching or
dynamic programming methods can be used for optimal border detection.

Sub-optimal surface detection

Sub-optimal surface detection uses multi-dimensional graph search to identify legal surfaces in three-
or higher-dimensional image data.

Surface growing is based on dynamic programming and avoids the problem of combinatorial
explosion by introducing local conditions that must be satisfied by all legal surfaces.

Direct graph cut segmentation

Graph cuts solve a region-based segmentation problem by the use of minimum s — 7 cut / maximum
flow combinatorial optimization algorithms.

The segmentation outcome is controlled by hard and soft constraints, and a cost function.

The minimum s — 7 cut problem is solved by finding a maximum flow from the source s to the sink .

Optimal single and multiple surface segmentation

Single and multiple interactive surfaces are identified by optimal graph searching in a transformed
graph.

Combinatorial explosion in computation is avoided by transforming the problems into computing
minimum s — ¢ cuts.

Despite the used graph-cut optimization, the method is principally different from the direct graph
cut segmentation approach.

Multiple interacting surfaces can be identified by incorporating mutual surface-to-surface
interrelationships as inter-surfaces arcs in n + 1-dimensional graphs.a



Chapter

Shape Representation and
Description

The last chapter was devoted to image segmentation methods and showed how to construct homogeneous
regions of images and/or their boundaries. Recognition of image regions is an important step on the way to
understanding image data, and requires an exact region description in a form suitable for a classifier
(Chapter 9). This description should generate a numeric feature vector, or a non-numeric syntactic description
word, which characterizes properties (for example, shape) of the region. Region description is the third of
the four levels given in Chapter 4, implying that the description already comprises some abstraction—for
example, 3D objects can be represented in a 2D plane and shape properties that are used for description are
usually computed in two dimensions. If we are interested in a 3D object description, we have io process at
least two images of the same object taken from different viewpoints (stereo vision), or derive the 3D shape
from a sequence of images if the object is in motion. A 2D shape representation is sufficient in the majority
of practical applications, but if 3D information is necessary—if, say, 3D object reconstruction is the
processing goal, or the 3D characteristics bear the important information—the object description task is
much more difficult; these topics are introduced in Chapter 11. In the following sections, we will limit our
discussion to 2D shape features and proceed under the assumption that object descriptions result from the
image segmentation process.

Defining the shape of an object can prove to be very difficult. Shape is usually represented verbally or in
figures, and people use terms such as elongated, rounded, with sharp edges, etc. The computer era has
introduced the necessity to describe even very complicated shapes precisely, and while many practical shape
description methods exist, there is no generally accepted methodology of shape description. Further, it is not
known what is important in shape. Current approaches have both positive and negative attributes; computer
graphics [Woodwark, 1986] or mathematics [Lord and Wilson, 1984] use effective shape representations
which are unusable in shape recognition [Juday, 1988] and vice versa. In spite of this, it is possible to find
features common to most shape description approaches. Location and description of substantial variations in
the first derivative of object boundaries often yield suitable information. Examples include alphanumeric
optical character recognition (OCR), technical drawings, electro-cardiogram (ECG) curve characterization,
etc.

Shape is an object property which has been carefully investigated in recent years and many papers may be
found dealing with numerous applications—OCR, ECG analysis, electro-encephalogram (EEG) analysis,
cell classification, chromosome recognition, automatic inspection, technical diagnostics, etc. Despite this
variety, differences among many approaches are limited mostly to terminology. These common methods can
be characterized from different points of view:

¢ Input representation form: Object description can be based on boundaries (contour-based, external)
or on more complex knowledge of whole regions (region-based, internal).
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e Object reconstruction ability: That is, whether an object’s shape can or cannot be reconstructed from
the description. Many varieties of shape-preserving methods exist. They differ in the degree of
precision with respect to object reconstruction.

e Incomplete shape recognition ability: That is, to what extent an object’s shape can be recognized
from the description if objects are occluded and only partial shape information is available.

e Local/global description character: Global descriptors can only be used if complete object data are
available for analysis. Local descriptors describe local object properties using partial information
about the objects. Thus, local descriptors can be used for description of occluded objects.

e Mathematical and heuristic techniques: A typical mathematical technique is shape description based
on the Fourier transform. A representative heuristic method may be elongatedness.

e Statistical or syntactic object description (Chapter 9).

e A robustness of description to translation, rotation, and scale transformations: Shape description
properties in different resolutions.

The role of different description methods in image analysis and image understanding is illustrated by the
flowchart shown in Figure 8.1.
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Figure 8.1: Image analysis and understanding methods.
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(a) (b) (©)

SSY  aSRy R

(d) (e) ()

Figure 8.2: (a) Original image 640 x 480. (d) Contours of (a). (b) Original image 160 x 120. (e) Contours of (b).
(c) Original image 64 x 48. (f) Contours of (c).

Problems of scale (resolution) are common in digital images. Sensitivity to scale is even more serious if
a shape description is derived, because shape may change substantially with image resolution. Contour
detection may be affected by noise in high resolution, and small details may disappear in low resolution (see
Figure 8.2). Therefore, shape has been studied in multiple resolutions which again causes difficulties with
matching corresponding shape representations from different resolutions. Moreover, the conventional shape
descriptions change discontinuously. A scale-space approach has been presented in [Babaud et al., 1986;
Witkin, 1986; Yuille and Poggio, 1986; Maragos, 1989] that aims to obtain continuous shape descriptions if
the resolution changes continuously. This approach is not a new technique itself, but is an extension of
existing techniques, and more robust shape methods may result from developing and retaining their
parameters over a range of scales. This approach will be mentioned in more detail in Section 8.2.4.

In many tasks, it is important to represent classes of shapes properly, e.g., shape classes of apples, oranges,
pears, bananas, etc. The shape classes should represent the generic shapes of the objects belonging to the
same classes well. Obviously, shape classes should emphasize shape differences among classes, while the
influence of shape variations within classes should not be reflected in the class description. Current research
challenges includes development of approaches to automated learning about shape and reliable definition of
shape classes (Section 8.4).

Object representation and shape description methods discussed in the following sections are not an
exhaustive list—we will try to introduce generally applicable methods. It is necessary to apply a problem-
oriented approach to the solution of specific problems of description and recognition. This means that the
following methods are appropriate for a large variety of descriptive tasks and the following ideas may be
used to build a specialized, highly efficient method suitable for a particular problem description. Such a
method will no longer be general since it will take advantage of a priori knowledge about the problem. This
is the way human beings can solve their vision and recognition problems, by using highly specialized
knowledge.

It should be understood that despite the fact that we are dealing with two-dimensional shape and its
description, our world is three-dimensional and the same objects, if seen from different angles (or changing
position/orientation in space), may form very different 2D projections (see Chapter 11). The ideal case would
be to have a universal shape descriptor capable of overcoming these changes—to design projection-invariant
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descriptors. Consider an object with planar faces and imagine how many very different 2D shapes may result
from a given face if the position and 3D orientation of this simple object changes with respect to an observer. In
some special cases, such as circles which transform to ellipses, or planar polygons, projectively invariant
features (called invariants) can be found. Unfortunately, no existing shape descriptor is perfect; in fact, they
are all far from being perfect. Therefore, a very careful choice of descriptors resulting from detailed analysis of
the shape recognition problem must precede any implementation, and whether or not a 2D representation is
capable of describing a 3D shape must also be considered. For some 3D shapes, their 2D projection may bear
enough information for recognition—aircraft contours are a good example; successful recognition of airplanes
from projections are known even if they change their position and orientation in space. In many other cases,
objects must be seen from a specific direction to get enough descriptive information—human faces are such a
case.

Object occlusion is another hard problem in shape recognition. However, the situation is easier here (if
pure occlusion is considered, not combined with orientation variations yielding changes in 2D projections as
discussed above), since visible parts of objects may be used for description. Here, the shape descriptor
choice must be based on its ability to describe local object properties—if the descriptor gives only a global
object description (e.g., object size, average boundary curvature, perimeter), such a description is useless if
only a part of an object is visible. If a local descriptor is applied (e.g., description of local boundary changes),
this information may be used to compare the visible part of the object to all objects which may appear in the
image. Clearly, if object occlusion occurs, the local or global character of the shape descriptor must be
considered first. ‘

In Sections 8.2 and 8.3, descriptors are sorted according to whether they are based on object boundary
information (contour-based, external description) or whether the information from object regions is used
(region-based, internal description). This classification of shape description methods corresponds to
previously described boundary-based and region-based segmentation methods. However, both contour-based
and region-based shape descriptors may be local or global and differ in sensitivity to translation, rotation,
scaling, etc.

8.1 REGION IDENTIFICATION

Region identification is necessary for region description. One of the many methods for region identification
is to label each region (or each boundary) with a unique (integer) number; such identification is called
labeling or coloring (also connected component labeling), and the largest integer label usually gives the
number of regions in the image. Another method is to use a smaller number of labels (four is theoretically
sufficient [Appel and Haken, 1977; Saaty and Kainen, 1977; Nishizeki and Chiba, 1988; Wilson and Nelson,
1990]), and ensure that no two neighboring regions have the same label; then information about some region
pixel must be added to the description to provide full region reference. This information is usually stored in
a separate data structure. Alternatively, mathematical morphology approaches (Chapter 13) may be used for
region identification.

Assume that the segmented image R consists of m disjoint regions R; (as in equation (6.1)). The image R
often consists of objects and a background

Rf = Lmj R..

i=li#b

where R is the set complement, R, is considered background, and other regions are considered objects.
Input to a labeling algorithm is usually either a binary or multi-level image, where background may be
represented by zero pixels, and objects by non-zero values. A multi-level image is often used to represent the
labeling result, background being represented by zero values, and regions represented by their non-zero
labels. Algorithm 8.1 presents a sequential approach to labeling a segmented image.
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Algorithm 8.1: 4-neighborhood and 8-neighborhood region identification

1. First pass: Search the entire image R row by row and assign a non-zero value v to each non-zero |
pixel R (i, j). The value v is chosen according to the labels of the pixel’s neighbors, where the
property neighboring is defined by Figure 8.3. (‘neighbors’ outside the image R are not considered),

e If all the neighbors are background pixels (with pixel value zero), R (i, j) is assigned a new |
(and as yet) unused label. ‘

o If there is just one neighboring pixel with a non-zero label, assign this label to the pixel R (i, j).

o If there is more than one non-zero pixel among the neighbors, assign the label of any one to the
labeled pixel. If the labels of any of the neighbors differ (label collision), store the label pair
as being equivalent. Equivalence pairs are stored in a separate data structure—an equivalence
table.’

2. Second pass: All of the region pixels were labeled during the first pass, but some regions have
pixels with different labels (due to label collisions). The whole image is scanned again, and pixels
are re-labeled using the equivalence table information (for example, with the lowest value in an
equivalence class).

Label collision is a very common occurrence—examples of image shapes experiencing this are U-shaped
objects, mirrored E (3) objects, etc. (see Figure 8.3c). The equivalence table is a list of all label pairs present
in an image; all equivalent labels are replaced by a unique label in the second step. Since the number of label
collisions is usually not known beforehand, it is necessary to allocate sufficient memory to store the
equivalence table in an array. A dynamically allocated data structure is recommended. Further, if pointers
are used for label specification, scanning the image for the second time is not necessary (the second pass of
the algorithm) and only rewriting labels to which these pointers are poiniing is much faster.

—
fii-1,j) fli-1,j-1) fi-1j) | fli-1,j+1) _IA ___2
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2
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1 1 1 |?
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Figure 8.3: Masks for region identification. (a) 4-connectivity. (b) 8-connectivity. (c) Label collision,

The algorithm is basically the same in 4-connectivity and 8-connectivity, the only difference being in the
neighborhood mask shape (Figure 8.3b). It is useful to assign the region labels incrementally to permit the
regions to be counted easily in the second pass. An example of partial results is given in Figure 8.4.

Region identification can be performed on images that are not represented as straightforward matrices:;
the following algorithm [Rosenfeld and Kak, 1982] may be applied to images that are run length encoded
(see Chapter 4).

Algorithmic details and the procedure for looking for neighboring leaf nodes can be found in [Rosenfeld
and Kak, 1982; Samet, 1984].

The region counting task is closely related to the region identification problem. As we have seen, object
counting can be an intermediate result of region identification. If it is only necessary to count regions with no
need to identify them, a one-pass algorithm is sufficient [Rosenfeld and Kak, 1982; Atkinson et al.,
1985].
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Figure 8.4: Object identification in 8-connectivity. (a), (b), (c) Algorithm steps. Equivalence table after step (b): 2-5,
5-6, 2-4.

Algorithm 8.2: Region identification in run length encoded data

1. First pass: Use a new label for each continuous run in the first image row that is not part of the
~ background.
2. For the second and subsequent rows, compare positions of runs.

e If arun in a row does not neighbor (in the 4- or 8-sense) any run in the previous row, assign a
new label.

e If a run neighbors precisely one run in the previous row, assign its label to the new run.

e If the new run neighbors more than one run in the previous row, a label collision has occurred.

Collision information is stored in an equivalence table, and the new run is labeled using the label of
any one of its neighbors.

3. Second pass: Search the image row by row and re-label the image according to the equivalence
table information.

If the segmented image is represented by a quadtree data structure, the following algorithm may be applied.

Algorithm 8.3: Quadtree region identification

1. First pass: Search quadtree nodes in a given order—e.g., beginning from the root and in the NW,
NE, SW, SE directions. Whenever an unlabeled non-zero leaf node is entered, a new label is
assigned to it. Then search for neighboring leaf nodes in the E and S directions (plus SE in
8-connectivity). If those leaves are non-zero and have not yet been labeled, assign the label of the
node from which the search started. If the neighboring leaf node has already been labeled, store the
collision information in an equivalence table.

2. Repeat step 1 until the whole tree has been searched.

3. Second pass: Re-label the leaf nodes of the quadtree according to the equivalence table.
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8.2 CONTOUR-BASED SHAPE REPRESENTATION AND DESCRIPTION

Region borders must be expressed in some mathematical form. The rectangular representation of x, pixel
co-ordinates as a function of the path length » is most common. Other useful representations are (see Figure 8.5):

* Polar co-ordinates, in which border elements are represented as pairs of angle 6 and distance r;
* Tangential co-ordinates, which codes the tangential directions 6(x,,) of curve points as a function of
path length n.

-
X

(a) (b) (c)

Figure 8.5: Co-ordinate systems. (a) Rectangular (Cartesian). (b) Polar. (c) Tangential.

8.2.1 Chain codes

Chain codes describe an object by a sequence of unit-size line segments with a given orientation (see Section
4.2.2). The first element of such a sequence must bear information about its position to permit the region to
be reconstructed. The process results in a sequence of numbers (see Figure 8.6); to exploit the position
invariance of chain codes the first element, which contains the position information, is omitted. This
definition of the chain code is known as Freeman’s code [Freeman, 1961]. Note that a chain code object
description may easily be obtained as a by-product of border detection: see Section 6.2.3 for a description of
border detection algorithms.

If the chain code is used for matching, it must be independent of the choice of the first border pixel in the
sequence. One possibility for normalizing the chain code is to find the pixel in the border sequence which
results in the minimum integer number if the description chain is interpreted as a base 4 number—that pixel
is then used as the starting pixel [Tsai and Yu, 1985]. A mod 4 or mod 8 difference code, called a chain code
derivative, is another numbered sequence that represents relative directions of region boundary elements,
measured as multiples of counter-clockwise 90° or 45° direction changes (Figure 8.6). A chain code is very
sensitive to noise, and arbitrary changes in scale and rotation may cause problems if used for recognition. The
smoothed version of the chain code (averaged directions along a specified path length) is less noise sensitive.

1 l<—T
G_T_ﬁ I T
Figure 8.6: Chain code in 4-connectivity, and its
l derivative. Cod e: 3,0, 0, 3,0, 1, 1, 2, 1, 2, 3, 2; derivative:
1,0,3,1,1,0,1,3,1, 1,3, 1.

e

8.2.2 Simple geometric border representation

The following descriptors are based mostly on geometric properties of described regions. Because of the
discrete character of digital images, all of them are sensitive to image resolution.
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Boundary length

Boundary length is an elementary region property, that is simply derived from the chain code representation.

Vertical and horizontal steps have unit length, and the length of diagonal steps in 8-connectivity is V2. 1tcan
be shown that the boundary is longer in 4-connectivity, where a diagonal step consists of two rectangular
steps with a total length of 2. A closed-boundary length (perimeter) can also be easily evaluated from run
length or quadtree representations. Boundary length increases as the image raster resolution increases; on
the other hand, region area is not affected by higher resolution and converges to some limit (see also the
description of fractal dimension in Section 15.1.6). To provide continuous-space perimeter properties (area
computation from the boundary length, shape features, etc.), it is better to define the region border as being
the outer or extended border (see Section 6.2.3). If inner borders are used, some properties are not satisfied—
e.g., the perimeter of a 1-pixel region is 4 if the outer boundary is used, and 1 if the inner is used.

Curvature

In the continuous case, curvature is defined as the rate of change of slope. In discrete space, the curvature
description must be slightly modified to overcome difficulties resulting from violation of curve smoothness.
The curvature scalar descriptor (also called boundary straightness) finds the ratio between the total number
of boundary pixels (length) and the number of boundary pixels where the boundary direction changes
significantly. The smaller the number of direction changes, the straighter the boundary. The evaluation
algorithm is based on the detection of angles between line segments positioned » boundary pixels from the
evaluated boundary pixel in both directions. The angle need not be represented numerically; rather, relative
position of line segments can be used as a property. The parameter b determines sensitivity to local changes
of the boundary direction (Figure 8.7). Curvature computed from the chain code can be found in [Rosenfeld,
1974], and the tangential border representation is also suitable for curvature computation. Values of the
curvature at all boundary pixels can be represented by a histogram; relative numbers then provide information
on how common specific boundary direction changes are. Histograms of boundary angles, such as the S
angle in Figure 8.7, can be built in a similar way—such histograms can be used for region description.
Another approach to calculating curvature from digital curves is based on convolution with the truncated
Gaussian kernel [Lowe, 1989].

Figure 8.7: Curvature.

Bending energy

The bending energy (BE) of a border (curve) may be understood as the energy necessary to bend a rod to the
desired shape, and can be computed as a sum of squares of the border curvature c(k) over the border
length L.

1 L
BE=zZCZ(k) 8.1)
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Figure 8.8: Bending energy. (a) Chain code 0,0, 2,0, 1,0, 7, 6, 0, 0. (b) Curvature 0, 2, -2, 1, -1, -1, -1, 2, 0. (c) Sum
of squares gives the bending energy. (d) Smoothed version.

Bending energy can easily be computed from Fourier descriptors using Parseval’s theorem [Oppenheim et al.,
1983; Papoulis, 1991]. To represent the border, Freeman’s chain code or its smoothed version may be used;
see Figure 8.8. Bending energy does not permit shape reconstruction.

Signature

The signature of a region may be obtained as a sequence of normal contour distances. The normal contour
distance is calculated for each boundary element as a function of the path length. For each border point A, the
shortest distance to an opposite border point B is sought in a direction perpendicular to the border tangent at
point A; see Figure 8.9. Note that being opposite is not a symmetric relation (compare Algorithm 6.16).
Signatures are noise sensitive, and using smoothed signatures or signatures of smoothed contours reduces
noise sensitivity. Signatures may be applied to the recognition of overlapping objects or whenever only
partial contours are available [Vernon, 1987]. Position, rotation, and scale-invariant modifications based on
gradient-perimeter and angle-perimeter plots are discussed in [Safaee-Rad et al., 1989].

(b)
Figure 8.9: Signature. (a) Construction. (b) Signatures for a circle and a triangle.

Chord distribution

A line joining any two points of the region boundary is a chord, and the distribution of lengths and angles of
all chords on a contour may be used for shape description. Let b(x, y) = 1 represent the contour points, and
b(x, y) = 0 represent all other points. The chord distribution can be computed (see Figure 8.10a) as

h(Ax,Ay) = [[b(x, y) b(x + Ax, y)dx dy 8.2)
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or in digital images as
h(Ax,Ay) =YD b(i, j)b(i+Ax, j+Ay). (8.3)
i ’

To obtain the rotation-independent radial distribution /,(r), the integral over all angles is computed
(Figure 8.10b).

nl2

h,(r)=J‘_”/7h(Ax,Ay) rdé (8.4)
where r = \/sz + A)'2 . @=sin"' (Ay/r). The distribution h, (r) varies linearly with scale. The angular
distribution & () is independent of scale, while rotation causes a proportional offset.

max ()

(@) =["""h(Ax,Ay)dr. (8.5)

0
Combination of both distributions gives a robust shape descriptor [Smith and Jain, 1982; Cooteset al., 1992].
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i
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Figure 8.10: Chord distribution

8.2.3 Fourier transforms of boundaries

Suppose C is a closed curve (boundary) in the complex plane (Figure 8.11a). Traveling anti-clockwise along
this curve keeping constant speed, a complex function z (7) is obtained, where ¢ is a time variable. The speed
should be chosen such that one circumnavigation of the boundary takes time 27; then a periodic function
with period 27 is obtained after multiple passes around the curve. This permits a Fourier representation of
z(1) (see Section 3.2.4),

)= 2 T,e™. (8.6)

The coefficients T, of the series are called the Fourier descriptors of the curve C. It is more useful to
consider the curve distance s in comparison to time

t=2rs/L, (8.7)
where L is the curve length. The Fourier descriptors T, are given by

1 L —i\2z/L)ns .
7, = fy als) e s 8.8)

The descriptors are influenced by the curve shape and by the initial point of the curve. Working with digital
image data, boundary co-ordinates are discrete and the function z(s) is not continuous. Assume thatz(k)isa
discrete version of z(s), where 4-connectivity is used to get a constant sampling interval; the descriptors T,
can be computed from the discrete Fourier transform (DFT, Section 3.2) of z (k)

z(k) «—DFT — T, . (8.9)
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The Fourier descriptors can be invariant to translation and rotation if the co-ordinate system is appropriately
chosen [Pavlidis, 1977; Persoon and Fu, 1977; Wallace and Wintz, 1980; Grimmins, 1982; Lin and
Chellappa, 1987]. They have been used for handwritten alphanumeric character description in [Shridhar and
Badreldin, 1984]; the character boundary in this description was represented by co-ordinate pairs (x,,, y,,) in
4-connectivity, (x;, ¥,) = (x,, y,). Then

1 —Il: /(L l)]nm
ay = X € 3 8.10
toL-142T (8.10)
1 & a(e-1)]m
by=——2 Yme : (8.11)
L-1 m=1
The coefficients a,, b, are not invariant but after the transform
1/2
= (1a,? +16,7) ", (8.12)
r, are translation and rotation invariant. To achieve a magnification in variance the descriptors w, are used
w,=r,/r. (8.13)

The first 10-15 descriptors w,, are found to be sufficient for character description.

(x(s).y1(5))

(a) (b)

Figure 8.11: Fourier description of boundaries. (a) Descriptors 7. (b) Descriptors S,,.

A closed boundary can be represented as a function of angle tangents versus the distance between the
boundary points from which the angles were determined (Figure 8.11b). Let ¢, be the angle measured at the
k™ boundary point, and let /, be the distance between the boundary starting point and the k" boundary point.
A periodic function can be defined

u,=2rl, /L. (8.15)
The descriptor set is then
| .
R ~mud .
=571 a(u) e du (8.16)

The discrete Fourier transform is used in all practical applications [Pavlidis, 1977].

The high-quality boundary shape representation obtained using only a few lower-order coefficients is a
favorable property common to Fourier descriptors. We can compare the results of using the S, and T,
descriptors: The S, descriptors have more high-frequency components present in the boundary function due to
more significant changes of tangent angles, and as a result, they do not decrease as fast as the 7, descriptors. In
addition, the S, descriptors are not suitable for boundary reconstruction since they often result in a non-closed
boundary. A method for obtaining a closed boundary using S, descriptors is given in [Strackee and Nagelkerke,
1983]. The T, descriptor values decrease quickly for higher frequencies, and their reconstruction always results
in a closed boundary. Moreover, the S, descriptors cannot be applied for squares, equilateral triangles, etc.
[Wallace, 1981] unless the solution methods introduced in [Wallace and Wintz, 1980] are applied.
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Fourier descriptors can also be used for calculation of region area, location of centroid, and computation
of second-order moments [Kiryati and Maydan, 1989]. Fourier descriptors are a general technique, but
problems with describing local information exist. A modified technique using a combined frequency-position
space that deals better with local curve properties exists, another modification that is invariant under rotation,
translation, scale, mirror reflection, and shifts in starting points is discussed in [Krzyzak et al., 1989].
Conventional Fourier descriptors cannot be used for recognition of occluded objects. Nevertheless,
classification of partial shapes using Fourier descriptors is introduced in [Lin and Chellappa, 1987].
Boundary detection and description using elliptic Fourier decomposition of the boundary is described in
[Staib and Duncan, 1992].

8.2.4 Boundary description using segment sequences

Representation of a boundary using segments with specified properties is another option for boundary (and
curve) description. If the segment type is known for all segments, the boundary can be described as a chain of
segment types, a code word consisting of representatives of a type alphabet. An example is given in Figure 8.14
which will be discussed later in more detail. This sort of description is suitable for syntactic recognition (see
Section 9.4). A trivial segment chain is used to obtain the Freeman code description discussed in Section 8.2.1.

A polygonal representation approximates a region by a polygon, the region being represented using its
vertices. Polygonal representations are obtained as a result of a simple boundary segmentation. The boundary
can be approximated with varying precision; if a more precise description is necessary, a larger number of
line segments may be employed. Any two boundary points X;, X, define a line segment, and a sequence of
points X,, X,, X, represents a chain of line segments—from the point x; to the point x,, and from X, to x;. If
X, = X3, a closed boundary results. There are many types of straight-segment boundary representations
[Pavlidis, 1977; Lindenbaum and Bruckstein, 1993]; the problem lies in determining the location of boundary
vertices, one solution to which is to apply a split-and-merge algorithm. The merging step consists of going
through a set of boundary points and adding them to a straight segment as long as a segment straightness
criterion is satisfied. If the straightness characteristic of the segment is lost, the last connected point is
marked as a vertex and construction of a new straight segment begins. This general approach has many
variations, some of which are described in [Pavlidis, 1977].

Boundary vertices can be detected as boundary points with a significant change of boundary direction
using the curvature (boundary straightness) criterion (see Section 8.2.2). This approach works well for
boundaries with rectilinear boundary segments.

Another method for determining the boundary vertices is a tolerance interval approach based on setting
a maximum allowed difference e. Assume that point x, is the end point of a previous segment and so by
definition the first point of a new segment. Define points X,, X; positioned a distance e from the point x, to be
rectilinear—x , X,, X are positioned on a straight line—see Figure 8.12. The next step is to locate a segment
which can fit between parallels directed from points X, and x;. Resulting segments are sub-optimal, although
optimality can be achieved with a substantial increase in computational effort [Tomek, 1974].

Figure 8.12: Tolerance interval.
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The methods introduced above represent single-pass algorithms of boundary segmentation using a segment-
growing approach. Often they do not result in the best possible boundary segmentation because the vertex
which is located often indicates that the real vertex should have been located a few steps back. The splitting
approach of segmenting boundaries into smaller segments can sometimes help, and the best results can be
anticipated using a combination of both methods. If the splitting approach is used, segments are usually
divided into two new, smaller segments until the new segments meet the final requirements [Duda and Hart,
1973; Pavlidis, 1977]. A simple procedure for splitting begins from end points x, and x, of a curve; these
end points are connected by a line segment. The next step searches all the curve points for the curve point X3
with the largest distance from the line segment. If the point located is within a preset distance between itself
and the line segment, the segment x,—x, is an end segment and all curve vertices are found, the curve being
represented polygonally by vertices x, and x,. Otherwise the point x, is set as a new vertex and the process
is applied recursively to both resulting segments x,—x; and x;—x, (see Figure 8.13 and Section 6.2.7).

Figure 8.13: Recursive boundary splitting.

Boundary segmentation into segments of constant curvature is another possibility for boundary
representation. The boundary may also be split into segments which can be represented by polynomials,
usually of second order, such as circular, elliptic, or parabolic segments [Costabile et al., 1985; Wuescher and
Boyer, 1991]. Curve segmentation into circular arcs and straight lines is presented in [Rosin and West, 1989].
presented in [Rosin and West, 1989]. Segments are considered as primitives for syntactic shape recognition
procedures—a typical example is the syntactic description and recognition of chromosomes [Fu, 1974],
where boundary segments are classified as convex segments of large curvature, concave segments of large
curvature, straight segments, etc., as illustrated in Figure 8.14.

Other syntactic object recognition methods based on a contour partitioning into primitives from a specified
set are described in [Jakubowski, 1990]. Partitioning of the contour using location of points with high positive
curvatures (corners) is described in [Chien and Aggarwal, 1989], together with applications to occluded
contours. A discrete curvature function based on a chain code representation of a boundary is used with a
morphological approach to obtain segments of constant curvature in [Leymarie and Levine, 1989]. Contour
partitioning using segments of constant intensity is suggested in [Marshall, 1989], and polygonal
representation used in a hypothesize and verify approach to recognition of occluded objects may be found in
[Koch and Kashyap, 1987].

Sensitivity of shape descriptors to scale (image resolution) has already been mentioned as an undesirable
feature of a majority of descriptors. In other words, shape description varies with scale, and different results

\9/ \ Figure 8.14: Structural description of chromosomes by

a chain of boundary segments, code word: d, b, a, b, ¢, b,
c d a,b,d,b,a, b, c, b, a, b. Adapted from [Fu, 1974].




